Home
Getting Started
Quickstart
Installation
Inference and Merging
Model Guides
Kimi Linear
Plano Orchestrator
MiMo
InternVL 3.5
OLMo 3
Trinity
Arcee AFM
Ministral3
Ministral3
Ministral 3 Thinking
Ministral 3 Vision
Magistral
Magistral
Magistral Thinking
Magistral Vision
Ministral
Mistral Small 3.1/3.2
Voxtral
Devstral
Mistral 7B
Llama 4
Llama 2
Qwen 3 Next
Qwen 3
Gemma 3n
Apertus
GPT-OSS
Seed-OSS
Phi
SmolVLM 2
Granite 4
Liquid Foundation Models 2
Hunyuan
Jamba
Orpheus
Command Line Interface (CLI)
Telemetry
Config Reference
API Reference
Dataset Formats
Pre-training
Instruction Tuning
Conversation
Stepwise Supervised Format
Template-Free
Custom Pre-Tokenized Dataset
Deployments
Docker
Multi-GPU
Multi Node
Ray Train
AMD GPUs on HPC Systems
Mac M-series
How To Guides
MultiModal / Vision Language Models (BETA)
RLHF (Beta)
Reward Modelling
Learning Rate Groups
LoRA Optimizations
Dataset Loading
Quantization Aware Training (QAT)
Quantization with torchao
Optimizations Guide
Core Concepts
Batch size vs Gradient accumulation
Dataset Preprocessing
Streaming Datasets
Multipack (Sample Packing)
Mixed Precision Training
Optimizers
Advanced Features
FSDP + QLoRA
Unsloth
PyTorch ao
Custom Integrations
Sequence Parallelism
Gradient Checkpointing and Activation Offloading
N-D Parallelism (Beta)
Troubleshooting
FAQ
Debugging
NCCL
On this page
utils.collators.core
utils.collators.core
utils.collators.core
basic shared collator constants